ESERCITAZIONE CLASSI QUINTE LICEO SCIENZE APPLICATE - 16/06/16

Un esperimento di microbiologia

Anna è ricercatrice in un laboratorio di microbiologia e sta eseguendo un'analisi comparata su due ceppi di una particolare specie batterica. In un esperimento recente ha osservato l'evoluzione della popolazione batterica in una coltura in cui convivevano entrambi i ceppi A e B. Dopo aver immesso nella coltura un certo numero iniziale di batteri dei due tipi, ha monitorato ogni ora il numero medio di batteri $n_{A}(t)$ e $n_{B}(t)$ ancora vivi. Il grafico sottostante riporta il risultato delle sue osservazioni.

Dalle osservazioni condotte, Anna ritiene di poter estrapolare due possibili modelli matematici per esprimere $n_{A}(t)$ e $n_{B}(t)$ in funzione del tempo:

$$
n_{A}(t)=A e^{-\frac{t}{2}} ; \quad n_{B}(t)=C\left(1-e^{-\frac{t}{2}}\right)+B
$$

a) Spiega perché le funzioni proposte da Anna sono plausibili e stabilisci quali valori siano da attribuire alle costanti A, B e C affinché tali funzioni riproducano al meglio le osservazioni sperimentali.
b) Dopo aver verificato che i valori suddetti sono $A=600, B=200 \mathrm{e} C=200$, studia e rappresenta in uno stesso diagramma le funzioni corrispondenti a tali valori, nell'intervallo $t \in[0 ;+\infty[$. Determina in particolare l'istante t_{0} in cui le popolazioni dei due tipi di batteri sono ugualmente numerose.

In una variante dell'esperimento, a partire dalle stesse condizioni iniziali, giunti all'istante t_{0} in cui le due popolazioni batteriche si trovano in equilibrio, Anna immette nella coltura un composto organico che ha l'effetto di stabilizzare i tassi istantanei di variazione $n_{A}^{\prime}\left(t_{0}\right)$ e $n_{B}^{\prime}\left(t_{0}\right)$ delle due popolazioni, e da quel momento i tassi di variazione restano costanti.
c) Dopo quanto tempo, a partire da t_{0}, non ci saranno più batteri vivi del ceppo A ? Qual è il numero di batteri del ceppo B ancora vivi nell'istante t_{1} in cui la popolazione A si estingue?
d) Riporta in un unico diagramma i grafici dei modelli funzionali di questo secondo esperimento nell'intervallo $\left[0 ; t_{1}\right]$.

In un terzo esperimento, relativo al solo ceppo batterico di tipo A, Anna modifica il genoma della popolazione batterica e ora il modello che ne descrive la crescita è il seguente:

$$
N_{A}(t)=\frac{t}{2} \cdot n_{A}(t)+300,
$$

dove $n_{A}(t)$ è la funzione determinata al precedente punto a.
e) Dimostra che ora la popolazione batterica del ceppo A non rischia più l'estinzione e che esiste un istante in cui la sua numerosità è massima: ricava tale istante e il corrispondente valore massimo.

